BOOSTING PUBLIC HEALTH RESILIENCE: HARNESSING AI-DRIVEN PREDICTIVE ANALYSIS TO PREVENT DISEASE OUTBREAKS

Authors

  • Rakesh Margam Digital Health Expert, USA Author

Keywords:

AI-Driven Predictive Analysis, Disease Outbreaks Prevention, Public Health Resilience, Infectious Diseases

Abstract

Despite advances in medical research, infectious illnesses continue to pose a threat to the public's health, demanding creative methods of outbreak prevention. The revolutionary potential of AI-driven predictive analysis as a significant tool for boosting disease outbreak prevention measures is explored in this study. This paper examines how AI's analytical power is used to predict, simulate, and lessen the effects of infectious disease epidemics (Markovic et al., 2022) (Margam, 2023) [1][2]. To stop the spread of these illnesses, healthcare stakeholders and researchers are working together in the United States (Friedman et al., 2021)[3] Preventing disease outbreaks now relies heavily on the use of AI-driven predictive analysis (Gerlee et al., 2022)[4] (Tashman, 2000)[5] Government organisations and public health organisations in the United States are increasingly using AI and machine learning to get insights into the mechanisms of disease transmission and enable preventive interventions (Lu et al., 2020)[6] (Bartoletti, 2019) [7]. Authorities are now able to predict illness trajectories in the setting of the United States thanks to predictive modelling, which is supported by AI (Lidströmer & Ashrafian, 2022) [8]. AI-driven models improve the precision of illness trajectory estimates by taking regional factors like population density, travel patterns, and healthcare facilities into account (khan et al., 2023) [9]. In the context of the United States, integrating big data analytics is essential for preventing disease outbreaks (Kumar et al., 2023) [10]. Authorities acquire a complete picture of how diseases spread by analysing several databases containing medical records, sociodemographic data, and environmental elements (Miller et al., 2023) [11]. Data analysis, for instance, allowed for resource allocation and targeted containment efforts during the COVID-19 pandemic (Dewey & Schlattmann, 2019) [12]. With a focus on the United States, this paper demonstrates how AI-driven predictive analysis is a game-changing factor in the prevention of disease outbreaks. Artificial intelligence (AI) offers a ray of hope in the fight for public health resilience because it can predict disease trends and enable targeted interventions. The integration of artificial intelligence and predictive analysis is emerging as a crucial method for ensuring global well-being as governments deal with the ever-changing landscape of infectious illnesses.

References

Markovic, S., Salom, I., Rodic, A., & Djordjevic, M. (2022). Analyzing the GHSI puzzle of whether highly developed countries fared worse in COVID-19. Scientific Reports, 12(1). https://doi.org/10.1038/S41598-022-22578-2

Margam, R. (2023). CONNECTING HEALTHCARE ECOSYSTEMS: THE JOURNEY OF INTEROPERABILITY. INTERNATIONAL JOURNAL OF BIOINFORMATICS AND BLOCKCHAIN TECHNOLOGY, Year: 2023, Volume: 1, Issue: 1, 1(1), 1–9. https://doi.org/10.17605/OSF.IO/PG6C9

Friedman, J., Liu, P., Troeger, C. E., Carter, A., Reiner, R. C., Barber, R. M., Collins, J., Lim, S. S., Pigott, D. M., Vos, T., Hay, S. I., Murray, C. J. L., & Gakidou, E. (2021). Predictive performance of international COVID-19 mortality forecasting models. Nature Communications 2021 12:1, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22457-w

Gerlee, P., Jöud, A., Spreco, A., & Timpka, T. (2022). Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy. Scientific Reports, 12(1). https://doi.org/10.1038/S41598-022-16159-6

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast., 16(4), 437–450. https://doi.org/10.1016/s0169-2070(00)00065-0

Lu, F. S., Nguyen, A. T., Link, N. B., Lipsitch, M., & Santillana, M. (2020). Estimating the Early Outbreak Cumulative Incidence of COVID-19 in the United States: Three Complementary Approaches. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2020.04.18.20070821

Bartoletti, I. (2019). AI in healthcare: Ethical and privacy challenges. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11526 LNAI, 7–10. https://doi.org/10.1007/978-3-030-21642-9_2

Lidströmer, N., & Ashrafian, H. (2022). Artificial Intelligence in Medicine. Artificial Intelligence in Medicine, 1–1858. https://doi.org/10.1007/978-3-030-64573-1

khan, B., Fatima, H., Qureshi, A., Kumar, S., Hanan, A., Hussain, J., & Abdullah, S. (2023). Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomedical Materials & Devices. https://doi.org/10.1007/S44174-023-00063-2

Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8459–8486. https://doi.org/10.1007/S12652-021-03612-Z

Miller, M. I., Shih, L. C., & Kolachalama, V. B. (2023). Machine Learning in Clinical Trials: A Primer with Applications to Neurology. Neurotherapeutics. https://doi.org/10.1007/S13311-023-01384-2

Dewey, M., & Schlattmann, P. (2019). Deep learning and medical diagnosis. The Lancet, 394(10210), 1710–1711. https://doi.org/10.1016/s0140-6736(19)32498-5

Mirbabaie, M., Stieglitz, S., & Frick, N. R. J. (2021). Artificial intelligence in disease diagnostics: A critical review and classification on the current state of

research guiding future direction. Health and Technology, 11(4), 693–731. https://doi.org/10.1007/S12553-021-00555-5

Long, J. B., & Ehrenfeld, J. M. (2020). The Role of Augmented Intelligence (AI) in Detecting and Preventing the Spread of Novel Coronavirus. Journal of Medical Systems, 44(3). https://doi.org/10.1007/S10916-020-1536-6

Encyclopedia of Machine Learning and Data Mining. (2017). Encyclopedia of Machine Learning and Data Mining. https://doi.org/10.1007/978-1-4899-7687-1

Santosh, K. C. (2020). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of Medical Systems, 44(5), 1–5. https://doi.org/10.1007/S10916-020-01562-1/FIGURES/5

Kavanagh, M. M., Erondu, N. A., Tomori, O., Dzau, V. J., Okiro, E. A., Maleche, A., Aniebo, I. C., Rugege, U., Holmes, C. B., & Gostin, L. O. (2020). Access to lifesaving medical resources for African countries: COVID-19 testing and response, ethics, and politics. The Lancet, 395(10238), 1735–1738. https://doi.org/10.1016/S0140-6736(20)31093-X

Daramola, O., Nyasulu, P., Mashamba-Thompson, T., Moser, T., Broomhead, S., Hamid, A., Naidoo, J., Whati, L., Kotze, M. J., Stroetmann, K., & Osamor, V. C. (2021). Towards AI-Enabled Multimodal Diagnostics and Management of COVID-19 and Comorbidities in Resource-Limited Settings. Informatics 2021, Vol. 8, Page 63, 8(4), 63. https://doi.org/10.3390/INFORMATICS8040063

Mashamba-Thompson, T. P., & Crayton, E. D. (2020). Blockchain and artificial intelligence technology for novel coronavirus disease-19 self-testing. Diagnostics, 10(4). https://doi.org/10.3390/DIAGNOSTICS10040198

Chehade, M. J., Yadav, L., Jayatilaka, A., Gill, T. K., & Palmer, E. (2020). Personal digital health hubs for multiple conditions. Bulletin of the World Health Organization, 98(8), 569–575. https://doi.org/10.2471/BLT.19.249136

Ogbaga, I. (2023). Artificial Intelligence (AI)-Based Solution to Malaria Fatalities In Africa: An Exploratory Review. https://doi.org/10.20944/PREPRINTS202307.1133.V1

Probert, W. J. M., Jewell, C. P., Werkman, M., Fonnesbeck, C. J., Goto, Y., Runge, M. C., Sekiguchi, S., Shea, K., Keeling, M. J., Ferrari, M. J., & Tildesley, M. J. (2018). Real-time decision-making during emergency disease outbreaks. PLoS Computational Biology, 14(7). https://doi.org/10.1371/journal.pcbi.1006202

Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS Computational Biology, 11(10). https://doi.org/10.1371/journal.pcbi.1004513

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634

Viboud, C., Charu, V., Olson, D., Ballesteros, S., Gog, J., Khan, F., Grenfell, B., & Simonsen, L. (2014). Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102429

Smolinski, M. S., Crawley, A. W., Baltrusaitis, K., Chunara, R., Olsen, J. M., Wójcik, O., Santillana, M., Nguyen, A., & Brownstein, J. S. (2015). Flu near you: Crowdsourced symptom reporting spanning 2 influenza seasons. American Journal of Public Health, 105(10), 2124–2130. https://doi.org/10.2105/AJPH.2015.302696

Freifeld, C. C., Mandl, K. D., Reis, B. Y., & Brownstein, J. S. (2008). HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports. Journal of the American Medical Informatics Association, 15(2), 150–157. https://doi.org/10.1197/jamia.M2544

Aiken, E. L., McGough, S. F., Majumder, M. S., Wachtel, G., Nguyen, A. T., Viboud, C., & Santillana, M. (2020). Real-time estimation of disease activity in emerging outbreaks using internet search information. PLOS Computational Biology, 16(8), e1008117. https://doi.org/10.1371/JOURNAL.PCBI.1008117

Sarumi, O. A. (2021). Machine Learning-Based Big Data Analytics Framework for Ebola Outbreak Surveillance. 580–589. https://doi.org/10.1007/978-3-030-71187-0_53

Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/J.CHAOS.2020.110059

Yee, D. A., Dejesus-Crespo, R., Hunter, F. F., & Bai, F. (2018). Assessing natural infection with Zika virus in the southern house mosquito, Culex quinquefasciatus, during 2016 in Puerto Rico. Medical and Veterinary Entomology, 32(2), 255–258. https://doi.org/10.1111/MVE.12289

Soliman, M., Lyubchich, V., & Gel, Y. R. (2020). Ensemble forecasting of the Zika space-time spread with topological data analysis. Environmetrics, 31(7), e2629. https://doi.org/10.1002/ENV.2629

Bergier, H., Duron, L., Sordet, C., Kawka, L., Schlencker, A., Chasset, F., & Arnaud, L. (2021). Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? Autoimmunity Reviews, 20(8), 102864. https://doi.org/10.1016/J.AUTREV.2021.102864

Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial Intelligence Transforms the Future of Health Care. The American Journal of Medicine, 132(7), 795–801. https://doi.org/10.1016/J.AMJMED.2019.01.017

Galetsi, P., Katsaliaki, K., & Kumar, S. (2023). Exploring benefits and ethical challenges in the rise of mHealth (mobile healthcare) technology for the common good: An analysis of mobile applications for health specialists. Technovation, 121. https://doi.org/10.1016/j.technovation.2022.102598

Mitchell, M., Hedt-Gauthier, B. L., Msellemu, D., Nkaka, M., & Lesh, N. (2013). Using electronic technology to improve clinical care – results from a before-after cluster trial to evaluate assessment and classification of sick children according to Integrated Management of Childhood Illness (IMCI) protocol in Tanzania. BMC Med Inform Decis Mak, 13, 95.

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys and Tutorials, 20(4), 2923–2960. https://doi.org/10.1109/COMST.2018.2844341

Yu, J., Park, S., Kwon, S. H., Ho, C. M. B., Pyo, C. S., & Lee, H. (2020). AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals. Applied Sciences 2020, Vol. 10, Page 6791, 10(19), 6791. https://doi.org/10.3390/APP10196791

Colubri, A., Hartley, M. A., Siakor, M., Wolfman, V., Felix, A., Sesay, T., Shaffer, J. G., Garry, R. F., Grant, D. S., Levine, A. C., & Sabeti, P. C. (2019). Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. E Clinical Medicine, 11, 54–64. https://doi.org/10.1016/j.eclinm.2019.06.003

Downloads

Published

2024-04-24

How to Cite

Rakesh Margam. (2024). BOOSTING PUBLIC HEALTH RESILIENCE: HARNESSING AI-DRIVEN PREDICTIVE ANALYSIS TO PREVENT DISEASE OUTBREAKS. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT (IJAIRD), 2(1), 76-90. https://iaeme-library.com/index.php/IJAIRD/article/view/IJAIRD_02_01_008