SILK FIBER ORIENTATION EFFECT ON TENSILE AND FLEXURAL STRENGTH OF ZEOLITE-REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES
Keywords:
Silk Fiber, Tensile, Flexural, OrientationAbstract
The role of silk fibers (SF) orientation is very decisive on the mechanical performance of high-density polyethylene (HDPE) with zeolite (Z) as a reinforcement material. This work aims to analyze the tensile and flexural characteristics of zeolite-filled HDPE (Z/HDPE) composites due to the incorporation of SF in numerous orientations. The SFs with a length of approximately 1 mm is chopped off for incorporation in the powder dry mix of Z and HDPE, which is ready for SF-oriented mold at angles ranging 0, ±22.5, ±45, ±67.5, and ±90o. The compression molding technology creates composites to fit dumbbell shape. The flexural test was carried out in compliance with the ASTM D790 standard, whereas tensile properties including elastic modulus, tensile strength, break elongation as well as yield strength were assessed on dumbbell shape composites. The findings demonstrate that the maximum force, as well as the elastic modulus, drop by changing the orientation of the fiber towards 0o. This propensity also takes place in failure and energy-breaking strains. With the SF orientation angle of 0o, the ultimate tensile strength and modulus of Young maximize. However, the E-modulus’ value exceeds that of the experimental.
References
Kandemir, T.R. Pozegic, I. Hamerton, S.J. Eichhorn, M.L. Longana, Characterisation of natural fibres for sustainable discontinuous fibre composite materials. Materials, 2020, 13(2129): 1-17
M.L. Longana, V. Ondra, H. Yu, K.D. Potter, I. Hamerton, Reclaimed carbon and flax fibre composites: manufacturing and mechanical properties. Recycling, 2018, 3(52): 1-13
F. Wang, M. Lu, S. Zhou, Z. Lu, S. Ran, Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy- based composites reinforced with bamboo fibers. Molecules, 2019, 24(15): 2682
S. Ouajai, R.A. Shanks, Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 2005, 89 (2): 327-335
H. Yu, M.L. Longana, M. Jalalvand, M.R. Wisnom, K.D. Potter, Hierarchical pseudo-ductile hybrid composites combining continuous and highly aligned discontinuous fibres. Composites Part A Applied Science and Manufacturing, 2017, 105
R. Gunti, A.V. R. Prasad, A.V.S.S.K.S. Gupta, Mechanical and degradation properties of natural fiber‐reinforced pla composites: jute, sisal, and elephant grass. Polymer Composites, 2018, 39(4): 1125-1136
D.K. Rajak, D.D. Pagar, P.L. Menezes, E.Linul, Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers, 2019, 11:1667
M.P.M. Dicker, P.F. Duckworth, A.B. Baker, Green composites: a review of material attributes and complementary applications. Composites Part A Applied Science and Manufacturing, 2014, 56: 280 – 289
A. Constante, S. Pillay, Compression molding of algae fiber and epoxy composites: modeling of elastic modulus. Journal of Reinforced Plastics and Composites, 2018, 37(19): 1202-1216
P. Sormunen, T. Kärki, Compression molded thermoplastic composites entirely made of recycled materials. Sustainability, 2019, 11: 631
M. Idicula, P.A. Sreekumar, K. Joseph, S. Thomas, Natural fiber hybrid composites - a comparison between compression molding and resin transfer molding. Polymer Composites, 2009, 30(10): 1417-1425
M. Zampaloni, F. Pourboghrat, S.A. Yankovich, B.N. Rodgers, J. Moore, L.T. Drzal, A.K. Mohanty, M. Misra, Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 2007, 38(6): 1569-1580
M. Andersson, J. Johansson, A. Rising, Silk spinning in silkworms and spiders. International Journal of Molecular Sciences, 2016, 17(8): 1290
N. Kronqvist, M. Otikovs, V. Chmyrov, G. Chen, M. Andersson, K. Nordling, J. Widengren, Sequential Ph-driven dimerization and stabilization of the n-terminal domain enables rapid spider silk formation. Nature Communications, 2014, 5: 3254
N. Johari, L. Moroni, A. Samadikuchaksaraei, Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 2020, 134: 109842
S. Mohammadzadehmoghadam, Y. Dong, Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor. Frontiers in Materials, 2019, 6: 1-12.
S. Ataollahi, S. T. Taher, R. A. Eshkoor, A. K. Arifn, C. H. Azhari, Energy absorption and failure response of silk/epoxy composite square tubes: experimental. Composites Part B: Engineering, 2012, 43(2): 542-548
A. U. Ude, A. K. Arifn and C. H. Azhari, Impact damage characteristics in reinforced woven natural silk/epoxy composite face-sheet and sandwich foam, coremat and honeycomb materials. International Journal of Impact Engineering, 2013, 58: 31–38
Y.K. Hamidi, M. A. Yalcinkaya, G.E. Guloglu, M. Pishvar, M. Amirkhosravi, M.C. Altan, Silk as a natural reinforcement: processing and properties of silk/epoxy composite laminates. Materials, 2018, 11: 2135
Y. Yang, D. Zhao, J. Xu, Y. Dong, Y. Ma, X. Qin, K. Fujiwara, E. Suzuki, T. Furukawa, Y. Takai, H. Hamada, Mechanical and optical properties of silk fabric/glass fiber mat composites: an artistic application of composites. Textile Research Journal, 2018, 88(8): 932-945
M. Saleem, S. Rasheed, C. Yougen, Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Science and Technology of Advanced Materials, 2020, 21(1): 242 - 266
M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, SC. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36(1): 68 - 91
J.C. Moses, S.K. Nandi, B.B. Mandal, Multifunctional cell instructive silk ‐ bioactive glass composite reinforced scaffolds toward osteoinductive, proangiogenic, and resorbable bone grafts. Advanced Healthcare Materials, 2018, 7(10): 1701418
J. Wu, K. Zheng, X. Huang, J. Liu, H. Liu, A.R. Boccaccini, Y. Wan, X. Guo, Z. Shao, Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomaterialia, 2019, 91: 60-71
S. Midha, S. Kumar, A. Sharma, K. Kaur, X Shi, P. Naruphontjirakul, J.R. Jones, S. Ghosh, Silk fibroin-bioactive glass based advanced biomaterials: towards patient-specific bone grafts. Biomedical Materials, 2018, 13(5): 055012
Purnomo, M. Subri, Post-yield fracture behavior of zeolite-reinforced high density polyethylene annealed composite. International Review of Mechanical Engineering, 2017, 11(1): 87-93
Purnomo, R. Soenoko, Y.S. Irawan, A. Suprapto, Deformation under quasi static loading in high density polyethylene filled with natural zeolite. Journal of Engineering Science and Technology, 2017, 12(5): 1191-1203
Purnomo, M. Subri, P.H Setyarini, Fracture development and deformation behavior of zeolite-filled high density polyethylene annealed composites in the plane stress fracture. FME Transactions, 2018, 46: 165-170
Purnomo, P.H. Setyarini, Atmospheric-pressure annealing effect on the impact fracture toughness of injection-molded zeolite-hdpe composite. International Review of Mechanical Engineering, 2018, 12(6): 556-562
B. Vinod, L.J. Sudev, Effect of fiber orientation on the flexural properties of palf reinforced bisphenol composites. International Journal of Science and Engineering Applications, 2013, 2(8): 166-169
G. Canché-Escamilla, J Rodriguez-Laviada, J.I Cauich-Cupul, E. Mendizábal, J.E. Puig, P.J. Herrera-Franco, Flexural, impact and compressive properties of a rigid- thermoplastic matrix/cellulose fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 2002, 33(4): 539-549
T. Kuboki, Foaming behavior of cellulose fiber-reinforced polypropylene composites in extrusion. Journal of Cellular Plastics, 2014, 50(2): 113–128
M.S. Irfan, F. Saeed, Y.Q. Gill, A.A. Qaiser, Effects of hybridization and fiber orientation on flexural properties of hybrid short glass fiber and short carbon fiber- reinforced vinyl ester composites. Polymers and Polymer Composites, 2018, 26(5- 6): 371-379
H. YuK, D. Potter, M.R. Wisnom, A novel manufacturing method for aligned discontinuous fiber composites (high performance-discontinuous fiber method). Composites Part A: Applied Science and Manufacturing, 2014, 65: 175-185
S. Mortazavian, Ali Fatemi, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites Part B: Engineering, 2015, 72: 116-129
O. Goldberg, I. Greenfeld, H.D. Wagner, Efficient toughening of short-fiber composites using weak magnetic fields. Materials (Basel). 2020, 13(10): 2415
A. Virk, W. Hall, J. Summerscales, Modulus and strength prediction for natural fiber composites. Materials Science and Technology, 2012, 28(7): 864-871
M. Cordin, T. Bechtold, T. Pham, Effect of fiber orientation on the mechanical properties of polypropylene-lyocell composites. Cellulose, 2018, 25(12): 7197- 7210
H. Krenchel, Fibre reinforcement: theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials. Copenhagen: Akademisk Forlag, 1964
M.R.H. Mazumder, F. Numera, A. Al-Asif, M. Hasan, Mechanical properties of silk and glass fiber reinforced hybrid polypropylene composites. IOP Conference Series: Materials Science and Engineering, 2018, 438: 012007
K. Zhang, F W Si, H.L. Duan, J. Wang, Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia, 2010, 6(6): 2165-2171
Y. Huang, B. Fei, C. Zhao, Mechanical properties of bamboo fiber cell walls during the culm development by nanoindentation. Industrial Crops and Products, 2016, 92: 102-108
C.A. Fuentes, G. Brughmans, L.Q.N. Tran, C. Dupont-Gillain, I. Verpoest, A.W. Van Vuure, Mechanical behavior and practical adhesion at a bamboo composite interface: Physical adhesion and mechanical interlocking. Composites Science and Technology, 2015, 109: 40-47
M. Mehdikhani, L. Gorbatikh, I. Verpoest, S. V. Lomov, Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 2018, 53(12): 1579-1669
K. Z. Zakaria, H. M. Akil, M. S. M. Shamsuddin, Z. A. Mohd Ishak, Mechanical performance of pultruded kenaf/glass hybrid fiber reinforced unsaturated polyester under hygrothermal conditions. AIP Conference Proceedings 2267, 2020: 020045
M. Bodaghi, C. Cristóvão, R. Gomes, Experimental characterization of voids in high fiber volume fraction composites processed by high injection pressure RTM. Composites Part A: Applied Science and Manufacturing, 2016, 82: 88-99
J. Neuenschwander, R. Furrer, A. Roemmeler, Application of air-coupled ultrasonics for the characterization of polymer and polymer-matrix composite samples. Polymer Testing, 2016, 56: 379-386.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Nikunj Patel, Piyush Jain (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
