SYNTHESIS OF NANO YTRRIUM OXIDE PHOSPHORS BY SIMPLE METHODS AND THEIR MORPHOLOGICAL STUDIES
Keywords:
Phosphor, Precipitation, CalcinationsAbstract
Among the family of rare earth compounds, yttrium oxide is a widely used material. Due to its chemical and physical properties, it is well known that yttrium oxide is a common luminescent host material. In many of the applications, reduction of the yttrium oxide crystallite size into the nanometer regime would result in improved performance compared to coarse grained yttrium oxide. This is particularly evident in phosphor application, where the phosphor efficiency varies inversely as the square of the particle size due to quantum confinement effect In this paper, synthesis and characterization of yttrium oxide by various methods are analyzed. Many research works is done on synthesis of Yttrium oxide and their characterization. Yttrium oxide samples are prepared by methods like Wet chemical, solvothermal process, and Sol-gel method. Then the samples are analyzed by XRD, SEM, EDAX and UV-Vis absorption studies. By optimizing various synthesis conditions, nanophosphors with high quantum efficiency and wide structural tenability can be prepared for their use in future display applications.
References
Mc N Alford, J. Mater. Sci, 1988, 2, 761.
Beaver M. B, (Ed.), Encyclopaedia of Materials Science and Engineering, 1986, 7.
Gal – Or L, Silberman L., Chamil R., J. Electromi. Soc. 1991, 138, 1939.
Hu Z, Oslcam G, Penn R. L., Pesika N., Searson P.C., J. Phys. Chem. B, 2003, 107, 3124. 5. Levy P, Leyva A G, Troiani H.E, Sanchez R. D, Appl. Phys. Lett. , 2003, 83, 5247.
Natter H, Hempelmann R, J. Phys. Chem, 1996, 100, 19525.
Penner R.M., J. Phys. Chem. B, 2002, 106, 3339.
Philips R J., Golden T D., Shumsky M. G., Switzer J A., J. Electrochem. Soc. 1994, 141, 2391.
Sekita M, Iwanaga K, Hamasuna T, Mohri S, Uota, Yada M, Kijima T, Phys. Status Solidi B , 2004, 241, 271.
Silver J, Martinez-Rubio, M I, Ireland T G, Fern G. R., Withnall R, J. Phys. Chem B 2001, 105, 948.
Tissue B M, Chem. Mater., 1998, 10, 2837.
Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J, Crabtree G W, J. Am. Chem. Soc., 2004, 126, 2316.
Xu A W, Fang Y P, You L P, Liu H Q, J. Am. Chem. Soc, 2003, 125, 1494.
Yada M, Furuta S, Katsuki H, Adv. Mater. (weinheim , Ger.), 2004, 16, 1448.
Goldburt E T, Kulkarni B, Bhargava R N, Taylor J, Libera M, J. Lumin., 1997, 72, 190.
Ravi P Rao, Solid State Comminications, 1996, 99, 439.
Subramanian R, Shankar P, Kavithaa S, Ramakrishnan S S, Angelo P C, Venkataraman H, Material Letters, 2001, 48, 342.
Wang S J, Zhong S L, Ou-Yang X J, Hu N, Chen X S, Wang S P, Xu R, Materials Science and Engineering B, 2009, 162, 200.
Muresan L, Popovici E J, Indrea E, J. of Optoelectronics and Adv. Materials, 2011, 13 (3), 183. 20. Nguyen Vu, Tran Kim Anh, Gyu-Chul Yi, Strek W, J Lumin. , 2007, 122-123, 776.
Stuart J. Pearce, Greg J. Parker, Martin D.B. Charlton,James S. Wilkinson , eprints.soton.ac.uk/ 177259/ 1/4835.pdf
Zhang ,Shaoqiang, J. of Applied Physics, 1998, 83, 3842.
RamasamySrinivasan, RajeswariYogamalar, Arumugam Chandra Bose, Mat. Res. Bullettin, 2012, 4, 1165.
Peng X, Manna L, YangW,Wickham J, ScherE,KadavanichA,Alivisatos A P, Nature, 2000, 404, 59.
Li B X, Jing M, Rong G X, Xu Y, Xie Y, Eur. J. Inorg. Chem, 2006,21, 4349.
Zhang D F, Sun L D,ZhangJ,Yan Z G, Yan C H, Cryst. Growth Des., 2008, 8,3609.
Li B X, Wang Y F, J. Phys. Chem. C, 2010, 114, 890.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 G. Bhavani, S. Ganesan (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.